| 1. | Electron has an intrinsic angular momentum in addition to the orbital angular momentum due its motion about the nucleus . 电子除了绕原子核运动的轨道角动量外还有内在的角动量。 |
| 2. | Orbital angular momentum vector 轨道角动量矢量 |
| 3. | Previous work has shown that the oam of a laser beam containing many photons in the same mode can be measured 先前的工作已经证明,同一模式的包含许多光子的轨道角动量是能够测量的。 |
| 4. | While the spin angular momentum describes the intrinsic photon spin and corresponds to the optical polarization of light , the orbital angular momentum is associated with the transverse phase front of a light beam 自旋角动量描述了光的内禀自旋性以及相应的光的偏振,而轨道角动量是和光束的横向相前相联系的。 |
| 5. | This paper discussed the correntness of the electroic spin througe three different experiments , and improved that electronic spin ' s supposed correctness is most important concept in micro - physics 摘要从三个基本实验讨论了电子自旋假设的正确性,说明电子自旋假设是微观物理领域最重要概念之一,同时推出电子自旋不是轨道角动量的相对论效应。 |
| 6. | Our approach differs from a recent theoretical paper that dealt with the possible conservation of the combined spin and orbital angular momentum in relation to the susceptibility of the down - conversion crystal 我们的方法与新近一些理论文章提出的方法是不一样的,他们处理自旋角动量和轨道角动量可能的守恒当中涉及到了下转换晶体的磁化系数。 |
| 7. | Based on the hmiltonian expression for hydrogen atom in combination with the theory proposed , the theoretical values of the hydrogen atom ' s energy , ground state energy and spectrum constant and the electron orbital angular momentum are given 根据氢原子的量子哈密顿量表示,结合创新的量子算符代数理论,得到氢原子的能量、氢原子的基态能量、电子轨道角动量、氢原子的光谱常数等各种物理量的理论值。 |
| 8. | First , using a kind of realization of yangian of a two angular momentum coupling system , we can work out the quantum states of the h = - s model , a two - lattice physics system whose orbital angular momentum and spin coupled in a special way . then , we select that situation that a orbital angular momentum of any value coupled with another of the value of 1 / 2 as an example , discuss the degenerate states of the model 首先,通过二角动量耦合状况下的yangian实现来确定模型(一个轨道角动量和自旋角动量以一种特定方式耦合的两格点物理体系)的量子态,以任意的轨道角动量与1 2的角动量耦合为例,来讨论具体到某一量子态下该体系的简并问题。 |
| 9. | Abstract : the magnetic moment of a hydrogen atom is calculated by using the solution of the relativistic wave equations . it is shown that the so called total magnetic moment are produced from the electron orbit motion . these results show that the total angular momentum j is actually the relativistic orbital angular momentum 文摘:利用氢原子的相对论性波动方程解计算了氢原子的磁矩.结果表明,现行量子理论中所谓的总磁矩实际上都是由电子的轨道运动产生的,由此提出了所谓的总角动量实际上是相对论性轨道角动量的看法 |