| 1. | A riemannian geometry underlying stochastic algorithm for adaptive principal component analysis 主成分分析的一个黎曼几何随机算法 |
| 2. | A riemannian geometry underlying stochastic algorithm for log - optimal portfolio problem with risk control 最优投资组合问题的一个黎曼几何随机算法 |
| 3. | The non - riemannian geometric quantities in finsler geometry describe the difference between finsler geometry and riemann geometry Finsler几何中的非黎曼几何量刻画的是finsler几何与黎曼几何的不同之处。 |
| 4. | In this papaer , a note about the proof of the chain rule in the book 《 an introduction to differentiable manifolds and riemannian geometry 》 is offered 给出了《微分流形与黎曼几何引论》一书中关于链法则证明的一个注记 |
| 5. | The text for this class is differential geometry , lie groups and symmetric spaces by sigurdur helgason ( american mathematical society , 2001 ) 然而课程还将简单介绍了基本的黎曼几何和复流形的知识,并会详细讨论半单李群和对称空间的理论。 |
| 6. | The text however develops basic riemannian geometry , complex manifolds , as well as a detailed theory of semisimple lie groups and symmetric spaces 然而课程还将简单介绍了基本的黎曼几何和复流形的知识,并会详细讨论半单李群和对称空间的理论。 |
| 7. | Also , general relativity defines non - inertia space - time as a space of riemann . for riemann space has positive curvature , we have to doubt about where the minus curvature space is 广义相对论把非惯性时空定义为黎曼空间,但由于黎曼几何是正曲率空间,既然广义时空是对称的,我们必然要问,负曲率空间到哪去了? |
| 8. | When target manifold is r , . if u is a function of finsler manifold , we can define laplace operator , it is well - defined . if u is called the eigenvalue of the laplacian a and u is called the corresponding eigenfunction 众所周知,对于黎曼几何,调和映射是调和函数的推广,且当目标流形为r时,二(哟二撇el ] .因此对于尸‘ nsler流形m上的函数。可以定义laptace算子为。 |
| 9. | The basic idea to construct grpcs is to establish object topology first , then use geometry to change the shape of differential manifold . in chapter 2 , we discuss the theoretical framework of grpcs that includes some relative idea about differential manifold . firstly , the definition of potential function on manifold is given 本文首先讨论了广义有理参数曲线曲面的理论基础,依次阐述了黎曼几何中关于流形、函数和映射的基本概念,并在此基础上提出了微分流形上势函数的定义。 |