| 1. | Interpolating surface based on rational blending function 一类基于有理混合函数的插值曲面 |
| 2. | Sets the source blend function used in blended transparency and antialiasing operations 设定源混合方法用来混合透明度和平滑处理。 |
| 3. | Sets the destination blend function used in blended transparency and antialiasing operations 设定目的混合方法用来混合透明度和平滑处理。 |
| 4. | Without blending processing , there must be cracks in the mosaics . so we must find out a good blending function to erase those cracks 如果没有平滑处理,那么我们得到的拼接图像将会有明显的缝隙,所以必须寻找一个良好的平滑函数以消除这种缝隙。 |
| 5. | The quadratic uniform b - spline curves are extended , and a class of polynomial blending functions of degree 3 and degree 4 are presented in this paper , which can be extended to the case of degree n 扩展了二次均匀b样条基函数,构造出三次和四次带局部参数_ i的调配函数,推广后得到了n次的调配函数。 |
| 6. | Here , we list kinds of blending function , and make compare with each other . finally , we choose the nearest image center blending function as our blending function , which produces good result 我们分别列举了几种平滑函数,并一一作了比较,最后我们选择最近图像中心函数作为平滑函数,取得了满意的效果。 |
| 7. | In the second chapter , a class of polynomial blending functions of degree n + 1 is presented . based on the functions , we present polynomial curves with some shape parameters . the generated curves are similar with the degree n bezier curves 第二章给出一类n + 1次多项式调配函数,并由此构造了带形状参数的多项式曲线,生成曲线具有与n次b zier曲线类似的几何性质。 |
| 8. | As further extension of the uniform b - spline basis functions , the author extends the uniform b - spline basis functions of degree 3 and degree 4 , and generates the blending functions of degree 5 ( 3 - b ) n degree 5 ( 4 - b ) and degree 6 ( 4 - b ) 作为均匀b样条曲线的进一步扩展,作者对三次和四次b样条基函数进行扩展,构造了三b五次、四b五次、四b六次调配函数,从而产生了连续性分别达到c ~ 3和c ~ 4连续的多项式曲线,它们的形状都可以用参数进行调整。 |
| 9. | Comparing with the quadratic b - spline curve , they have advantages by themselves : firstly , the shape of the curves can be adjusted locally by the parameters i ; secondly , the curves formed by blending functions of degree 4 can be g2 continuous . in addition , in order to meet various requests for continuity of curves in practical applications , corresponding polynomial functions can be used to construct the curves 但与二次均匀b样条曲线相比,它们还有其自身的优点:首先,曲线的形状都可用参数_ i进行局部调整:其次,四次调配函数所构造的曲线就可达到g ~ 2连续;另外,为了满足实际应用中对曲线连续性的不同要求,可使用相应次数的调配函数来构造曲线。 |
| 10. | Extending the cubic a - b - spline interpolation curves with the blending function of degree 4 ( 3 - b ) , we get the interpolation curves of degree 4 . the curves have not only kept the structures and properties of the cubic a - b - spline interpolation curves but also increased a shape control parameter , which expands the adjusting ranges of the curves and make the curves easier to be controlled 利用三b四次调配函数对三次- b样条插值曲线进行了扩展,扩展后得到的四次插值曲线在保留了三次- b样条插值曲线的结构和性质的同时,增加了一个形状调节参数,从而扩大了参数对曲线的调节范围,使曲线更易于控制。 |