| 1. | Research of stress field intensity model on the fatigue strength prediction for welded steel structures 焊接钢结构疲劳强度预测的应力场强模型研究 |
| 2. | Area method and stress field intensity approach to estimate the fatigue strength of welded steel structures are presented in the paper 本文分别建立了焊接钢结构疲劳强度预测的面积法和应力场强法的理论。 |
| 3. | The effectiveness of predicting model is proved by means of comparison between predictions and experiments for a few types of welded steel structures 通过对几类典型焊接钢结构疲劳强度的理论预测与疲劳试验结果的比较,验证了理论模型的正确性。 |
| 4. | One point method , mean square curve method and the maximum likelihood principle to predict p - s - n curve for welded steel structures for arbitary survival rate are presented 本文建立了任意存活率下焊接钢结构p - s - n曲线预测的一点法,均方差曲线法极大似然法。 |
| 5. | Based on the predicting model of effective stress concentration factor , estimating methods of s - n curve for welded steel structures are set up under symmetrical and unsymmetrical stress cycle respectively 本文以有效应力集中系数预测模型为基础,分别建立了对称循环和非对称循环时焊接钢结构s - n曲线的理论预测方法。 |
| 6. | By introducing the concept of the worst - case notch , the theory prediction model of the effective stress concentration factor for welded steel structures are established for symmetrical and unsymmetrical stress cycle respectively 本文在引入“最坏切口”概念的基础上,分别建立了对称循环和非对称循环时焊接钢结构有效应力集中系数的理论预测模型。 |
| 7. | Energy estimating approach of fatigue crack initiation life for welded steel structures is obtained by using molski - glinka energy density equation , introducing the worst - case fatigue notch factor , and considering the effects of residual stress on fatigue 本文采用应力应变能密度的molski - glinka方程,建立了一种预测焊接钢结构疲劳裂纹形成寿命的能量方法。该方法引入了极值疲劳切口系数,并考虑了焊接残余应力对裂纹形成寿命的影响。 |
| 8. | This dissertation applies 3 - d finite element theory to development of the shape functions and stiffness matrixes of the triangular prism isoparameter elements ( 6 to 15 nodes ) . a calculating method for gaussian integral in triangular prism is presented . the stress field in welded steel structures can be computed by the triangular prism isoparameter elements ( 6 to 15 nodes ) and hexahedron isoparameter elements ( 8 to 21 nodes ) 本文应用三维有限元理论,构造了一类五面体6 15节点单元的形函数,提出了在五面体单元内的gauss积分处理方法,建立了相应的单元刚度矩阵,将其与六面体8 21节点单元结合,可用于计算焊接钢结构的应力场。 |