| 1. | On some characterizations of perfect paracompact spaces 关于完全仿紧空间的一些刻画 |
| 2. | Some properties of locally and strongly paracompact spaces 局部强仿紧空间的一些性质 |
| 3. | A characterization of base - paracompact spaces 仿紧空间的一种刻划 |
| 4. | On inverses images of paracompact spaces 关于仿紧空间的原象 |
| 5. | On nearly strongly paracompact space 关于近似强仿紧空间 |
| 6. | Countably paracompact space 可数仿紧空间 |
| 7. | Locally paracompact spaces 局部仿紧空间 |
| 8. | It is proved that strong countable compact set is a strong fuzzy paracompact if and only if it is a strong fuzzy compact , strong fuzzy compact set and fuzzy unit interval are strong fuzzy paracompact , the product of a strong fuzzy compact set and a strong paracompact set is strong fuzzy paracompact , a strong t2strong fuzzy paracompact space is strong 5 - regular and strong s - normal , a strong 5 - regula 证明了每个强fuzzy紧集和fuzzy单位区间i厂)都是强fumy仿紧的;强fuzzy紧集和强fuzzy仿紧集的乘积是强fuzzy仿紧集;强tz的强fuzzy仿紧空间是强s “一正则的;强tz的强fuz 。 |
| 9. | In 1986 , in the paper [ 1 ] junnila proved the result : a space is hereditarily metacompact iff its every scattered partion has a point finite open expansion . and in the paper [ 2 ] , by the example 3 . 2 zhu peiyong proved that the hereditarily paracompact spaces have no a similar characterization to junnila ' s Junnila在文[ 1 ]中证明了:一个空间是遗传亚紧的当且仅当它的每个散射分解有一个点有限的开膨胀。而朱培勇在文[ 2 ]中用例3 . 2从反面证明了:遗传仿紧空间不与空间的每个散射分解有局部有限的开膨胀等价。 |