| 1. | We can not say for certain which eigenvalue will be obtained . 我们不能说一定得到哪个本征值。 |
| 2. | Notice that the energy eigenvalues are not equally spaced . 注意,这些本征值并不是等距离分布的。 |
| 3. | Since these eigenfunctions are equations we can graph them . 由于这些本征函数是方程,所以我们能以图来描绘。 |
| 4. | It can always be arranged that degenerate eigenfunctions are orthogonal . 总可以做到使得简并的本征函数是正交的。 |
| 5. | To this end we shall first consider the following eigenvalue problem . 为此目的,我们将首先考虑下列的本征值问题。 |
| 6. | We always reject zero as an eigenfunction on the ground of physics . 根据物理上的理由,我们总是剔除把零作为本征函数。 |
| 7. | For longer wavelengths a number of extrinsic photoconductive devices exist . 对于更长的波长,有许多非本征光电导器件可用。 |
| 8. | Determine the most probable position(s)of the electron for each eigenstate . 试对各个本征态,分别确定电子最可能出现的一个(或几个)位置。 |
| 9. | the roots of the characteristic equations are known as eigenvalues, or characteristic values. 特征方程之根称为本征值或特征值。 |
| 10. | The procedure described above applies to the eigenvalues and eigenfunctions of any hermitian operator . 用上述运算方法也能求出任一厄密算符的本征值和本征函数。 |