adj. = binomial. binominal system (以属名、种名命名动植物的)双名制。
Example Sentences:
1.
The scientific name of an animal taxon in binominal nomenclature 即在二名式命名法中的一个动物分类单元的学名。
2.
There is also a brief introduction of another commonly used pricing model , the binominal option pricing model , including its relations to the black - scholes option pricing model 调整模型的基本假设条件,将模型扩展为多因素模型。第一部分还介绍了另一种常用的期权定价模型- -二项分布模型。
3.
So the general distribution patterns of s . tsinyunensis are clumped type with a high clumped intensity . the diffusing tendency high consistency with the mathematics mode , i . e . , the theoretic modes of the negative binominal distribution and poisson distribution 在所调查的8个群落样线上,地上植株数量最少的有33株(种群v ) ,最多的有442株(种群111 ) ,平均株间距最小为1
4.
First , this section resorts various valuation model and hold that it would be better to classify the valuation into traditional method , binominal tree method and option - adjusted spread method . according to the sequence , this article introduce three valuation model respectively and point out which aspect these method improves on in different phases and their applicable conditions 本章对有关抵押贷款证券的定价方法进行了系统的归纳与整理,认为主要存在三种定价方法,分别为传统定价方法、二项树定价模型和期权调整价差定价模型,并按照定价方法的发展顺序分别予以介绍,同时指出了不同阶段定价方法的改进之处和各自的适用条件。
5.
Second , go deep into investigate the frame and calculate method of real options , apply formulation of gesk , black - scholes carr and margrabe to a instance , and compare the results of different formulations . make use of binominal lattice ^ finite difference and monte carlo to one instance . this paper suggests that the operable procedure and method copeland and antikarov provided with monte carlo simulation and binominal lattice is a best way 第二,深入分析实物期权应用框架和计算方法,利用gesk公式、 black - scholes公式、 carr公式和margrabe公式对具体的实例进行了计算比较,又采用二项网格法、有限差分方法和蒙特卡罗方法对实例进行了模拟计算。
6.
The competition among those species like s . tsinyunensis , dryopteris erythrosora and veronicastrum stenostachyum etc . , is intense in the communities , which may be one of the reasons why s . tsinyunensis is going to be endangered and with a very restricted distribution . the distribution patterns of the seven populations of s . tsinyunensis are clumped among the eight populations we studied , except population v of random distribution . the spatial pattern of 6 populations of s . tsinyunensis have high consistency with the negative binominal distribution , while another 2 populations , i . e . , i and iii are poisson distributions 6 )缙云黄芩各种群空间分布格局基本呈聚集分布,其中7个种群的分布格局类型是聚集分布,其聚集强度较高,另有一个种群为随机分布;其种群的离散分布拟合结果也严格符合一定的数学模式,其中负二项分布、 poisson分布分别是该物种种群空间分布的理论分布模式,其中6个种群拟合出的结果是负二项分布,种群i和种群m拟合出的结果是poisson分布。