| 1. | We need to know how hard it is to reverse the exponentiation 我们需要知道求幂运算的逆运算的难度。 |
| 2. | When more than one exponentiation is performed in a single expression , the 如果在单个表达式中执行多个求幂运算,则按 |
| 3. | Exponentiation uses the 求幂使用 |
| 4. | If we use exponentiation to encrypt or decrypt , the adversary can use logarithm to attack 如果我们运用求幂运算来加密和解密,对手就可以运用对数进行攻击。 |
| 5. | First , computers have circuits for performing arithmetic operations , such as : addition , subtraction , division , multiplication and exponentiation 第一,计算机具有进行加、减、乘、除及取幂等各种算术运算的电路。 |
| 6. | However the time - consuming modulo exponentiation computation , which has always been the bottle - neck of rsa , restricts its wider application 但该算法所采用的幂剩余计算会耗费太多的时间,一直是制约其广泛应用的瓶颈。 |
| 7. | Exponentiation fermat ' s little theorem sometimes is helpful for quickly finding a solution to some exponentiations . the following examples show the idea 虽然我们在本章后面只了解该定理的某些应用,但这该定理在解决一些问题时还是非常有用的。 |
| 8. | Exponentiation , which normally has higher precedence than addition or multiplication , is evaluated last in this example because the other expressions are enclosed in parentheses 通常比加法或乘法具有更高优先级的求幂在此示例中最后计算,因为其他表达式都放在括号中。 |
| 9. | At the same time , it is relatively colorfully that this paper makes use of some proverties of topological spaces to discuss the problems about countable ordinal exponentiation arithmetic 同时,本文用拓扑空间的一些性质来讨论集合论中的可数序数指数运算问题也比较精彩。 |
| 10. | The key of rsa is the modular exponentiation multiplication of large number , in this thesis , we modify the montgomery algorithm which be used to implement rsa Rsa算法的核心是大数模幂乘运算,本文选用montgomery模幂乘算法来实现ras算法,对montgomery模乘算法的fpga实现进行了改进。 |