| 1. | Relation of directly - riemann , lebesgue and riemann intergration 积分的相互关系 |
| 2. | Lebesgue decompositions of non - additive set functions 集值测度的哈恩分解 |
| 3. | The existence of lebesgue none - measure set and its applications 不可测集的存在性及其应用 |
| 4. | Equivalent definitions of abstract lebesgue integral 积分的等价定义 |
| 5. | Research on several qualities of riemann - lebesgue - stieltjes integral 积分的两个性质的研究 |
| 6. | Background rebuilding of time sequence signal base on lebesgue integral 积分理论的时间序列信号中的背景重建 |
| 7. | Lastly , by applying the representation theorem of t - measures , we get the lebesgue decomposition theorem for tco - measures 最后,我们运用t _ ?测度的积分表示定理证明了t _ ?测度的lebesgue分解定理。 |
| 8. | In section 2 , based on knowledge class open intervals are constructed , then a kind of specific lebesgue measures , called knowledge measure , is defined and researched 第2节,以知识分类为基础,构造开区间,定义和研究了一种具体的勒贝格测度? ?知识测度。 |
| 9. | This paper describes the feature of riemann integratiable function , and point out that the space of riemann integratiable function is not perfect under the meaning of lebesgue integral 摘要综述了黎曼可积函数的基本特征,并指出黎曼可积函数列的极限运算在积分意义下是不封闭的。 |
| 10. | 103 picks up where 18 . 100b ( analysis i ) left off . topics covered include the theory of the lebesgue integral with applications to probability , fourier series , and fourier integrals 课程18 . 103是18 . 100b (分析i )的延续。本课程的主题包括:运用概率论的勒贝格积分理论,傅立叶级数,以及傅立叶积分。 |