| 1. | Give a set of mean - value theorem in open - interval with non - differentiable points 摘要给出了开区间内有不可导点的微分中值定理。 |
| 2. | Therefor , this chapter puts forward the solution of non - differentiable equations 为此,本章就解决不可导问题提出了可行的解决方法。 |
| 3. | Higher order f - convexity and higher order symmetric duality in non - differentiable mathematical programming 一个不可微数学规划中的高阶对偶模型 |
| 4. | But these methods are designed to solve differen - tiable problems , they will be no use when meeting with non - differentiable equations 但是,这些方法都是为求解可导方程设计的,遇到不可导方程就束手无策了。 |
| 5. | Chapter one : this chapter discuss mainly about the astringency of several deformed newton ' s iterative methods and their application in solution of non - differentiable problems 第一章:主要讨论了几种变形newton迭代的收敛性问题,以及它们在求解不可导方程中的应用。 |
| 6. | The object functions for synthesis of array antennas usually have the characteristics of multi - parameters , non - differentiable even discontinuities . the optimization of pattern function is non - linear problem 阵列天线的综合问题大多呈现多参数、不可微、甚至不连续的特性,其方向图参数的最优化是一种非线性优化问题。 |
| 7. | Continuity , integrability and differentiability of riemann function are discussed ; especially , the non - differentiable properties on [ 0 , 1 ] are proved , and dirichlet ' s function is comparated with it 摘要从黎曼函数的简单特徵入手讨论它的连续性、可积性、可导性,特别是证明了黎曼函数在区间[ 0 , 1 ]上处处不可导,并结合狄利克雷函数加以引申和推广。 |
| 8. | It can speed the local rate of convergence and improve the accuracy of solution , and to solve nonlinear constraint optimization problems , coa was combined with exact non - differentiable penalty function 它利用混沌变量的特定内在随机性和遍历性跳出局部最优点,并在局部搜索空间经过线性搜索提高解的搜索速度和精度,通过结合精确不可微罚函数以用于求解非线性约束优化问题。 |
| 9. | As a powerful global optimization approach , genetic algorithms ( ga ) can solve a variety of optimization problems in which the objective function is discontinuous , non - differentiable , or highly non - linear , to produce high convergence speed and vast search space 摘要遗传算法作为一种全局优化算法,可以用来解决在目标函数不连续、不可能、非线性等情况下的复杂问题,且具有较高的收敛效率和广阔的搜索空间。 |
| 10. | Furthermore , when replacing the entropy function by a general separate multiplier function , we develop a new regularization approach , referred to as lagrangian regularization approach . this approach does not only provide a unified smoothing technique for the non - differentiable m ( x ) and but also offers a unified framework for constructing penalty functions , whereby building a bridge between the penalty functions and the classical lagrangian 该方法不仅提供了统一光滑不可微函数m ( x )和( ? | r _ - ~ m )的办法,而且还给出了一种构造罚函数的统一框架,由此将罚函数与经典拉格朗日函数从对偶空间的角度联系在一起。 |