| 1. | It does not have the nice functorial properties . 它不具有那些好的函子性质。 |
| 2. | The proof shows that any functor which is a left adjoint is right exact . 该证明指出,任一函子,如果是一个左伴随,就右正合。 |
| 3. | On dual functors in categories of twisted lie structures 结构范畴中的对偶函子 |
| 4. | Connected sequence of functors 函子的连通序列 |
| 5. | Associated restriction functor 相伴限制函子 |
| 6. | Category of functors 函子的范畴 |
| 7. | This paper defines homology monomorphism , homology epimorphism , homology regular morphism in the category of topological spaces with point by using homology functor 摘要利用同调函子,在点标拓扑空间范畴中定义了同调单态、同调满态、同调正则态射等概念。 |
| 8. | It is showed that the loop space functor and the suspension functor preserve the properties of homotopy regular . and a series of homotopy equivalence spaces are constructed 摘要证明了闭路函子和同纬函子保持同伦正则性,同时构造出了一系列同伦等价的空间。 |
| 9. | In the first part , we proof that tensor product of projective semimodules is still projective ; in second part , we construct the equivalence condition of projective semimodule and horn exact sequence 摘要第一部分在[ 3 ]中张量积的定义下证明了投射半模的张量积仍是投射的;第二部分在文献[ 4 ]正合列的定义下建立了投射半模与函子正合列的等价条件。 |
| 10. | The hermitian forms plays an important role in the k - theory of forms , while it is necessary to discuss the general hermitian groups and its elementary subgroups for studying the at , - functor and k2 - functor of the hermitian forms 厄米特型在型的k -理论中占有重要的地位,而讨论一般厄米特群及其基本子群是研究厄米特型的k _ 1 -函子和k _ 2 -函子所必须的。 |