| 1. | Each successive noise function you add is known as an octave 每个你所叠加的噪声函数就是一个倍频。 |
| 2. | This is the perlin noise function 这个就是柏林噪声函数。 |
| 3. | A noise function is essentially a seeded random number generator 一个噪声函数基本上是一个种子随机发生器。 |
| 4. | Remember that it ' s just several interpolated noise functions added together 记住这知识几个插值的噪声函数叠加在一起。 |
| 5. | The reason for this is that each noise function is twice the frequency of the previous one 因为每一个噪声函数是上一个的两倍频率。 |
| 6. | It is also wise to stop adding noise functions when their amplitude becomes too small to reproduce 当振幅变的很小的时候,也应该明智的停止再叠加噪声函数。 |
| 7. | The perlin noise function recreates this by simply adding up noisy functions at a range of different scales 柏林噪声函数通过直接添加一定范围内,不同比例的噪声函数来重现这种现象。 |
| 8. | To create a perlin noise function , you will need two things , a noise function , and an interpolation function 为了创建一个柏林噪声函数,我们需要两个东西,一个噪声函数和一个插值函数。 |
| 9. | Now , if you take lots of such smooth functions , with various frequencies and amplitudes , you can add them all together to create a nice noisy function 现在,如果你使用很多平滑函数,分别拥有各种各样的频率和振幅,你可以把他们叠加在一起来创建一个漂亮的噪声函数。 |