| 1. | Review of phononic crystals based control of noise and vibration 基于振动与噪声控制的声子晶体研究进展 |
| 2. | The vibration property of one dimension thin rod phnoonic crystal is studied 摘要研究了一维细长杆声子晶体振动特性。 |
| 3. | Band gaps and application of one - dimensional phononic crystals consisted of granite and nitrile rubber 丁腈橡胶声子晶体的带隙及其应用 |
| 4. | Calculation of the band structures in two - dimensional phononic crystals consisting of elliptic cylinders 二维椭圆柱散射体声子晶体带结构的计算 |
| 5. | Moreover , the effect of the transverse wave on the band gaps by changing the phononic crystals diameter 并通过仿真不同直径的声子晶体研究了横波对带隙的影响。 |
| 6. | Two - dimensional acrylic / air sonic band structure with square lattice is considered in the numerical example 本文以平面波展开法分析压克力?空气声子晶体声波全频沟之现象。 |
| 7. | The result of the vibration reduction for finite structure is simulated by using msc / nastran , which accords well with the experiment one 对于有限结构的一维声子晶体,利用msc / nastran进行防真,仿真结果与实验吻合较好。 |
| 8. | With acoustic propagation being mostly forbidden , the findings of the sonic band gaps can potentially be used to design sound insulation systems 当声波之波传被阻绝于声子晶体之外时,这样的声子晶体设计将可用来当作声音的频障设计。 |
| 9. | In this paper , we present the analytical results of the total band gaps of sound waves in two - dimensional sonic crystals using the plane wave expansion method 声子晶体的频沟现象,可应用于彻体波滤波器或表面声波滤波器,阻止特定角度与频率入射的声子传递,藉以达成滤波之效果。 |
| 10. | Using the plane wave expansion method , from the computation result for the band gaps structure of infinitd periodic one dimension phononic crystal , it is found the width of the first gap relates with the material portion ratio 利用平面波展开法,计算一维无限周期结构声子晶体的带隙结构,发现每一带隙的宽度与材料的组份比有关。 |