| 1. | Wavelet transform under the framework of distribution 广义函数框架下的小波变换及其性质 |
| 2. | Convolution of generalized function 广义函数的卷积 |
| 3. | Convolution of distributions 广义函数的卷积 |
| 4. | Analytical solutions of a generalized function equation in the theory of fluids 流体力学中一个广义函数方程解析解的存在性 |
| 5. | An embedding theorem for space of distributions onlocally convex space 局部凸空间上检验函数与广义函数空间的嵌入定理及其应用 |
| 6. | The convergence of the solution of a linear singularly perturbed system in distribution topology as tends to zero is considered 摘要讨论了线性奇异摄动系统广义状态解当趋于零时在广义函数空间上的收敛性问题。 |
| 7. | A survey concerned with the wavelet analysis ' s developing history , current situation of generalized functions and the research background of signal ' s arriving points is given 对小波分析的发展简史、广义函数的现状和瞬态信号参数检测的研究背景作出综述。 |
| 8. | Furthermore , in order to make a necessary foundation for further research , the relevant knowledge about wavelet analysis and generalized functions is introduced briefly 并简要介绍小波分析及广义函数的一些基本原理与相关知识,以此作为本课题研究的必备基础。 |
| 9. | On the basis of the classical valuation method of generalized functions , the set value of a generalized function has been defined by the equivalent value mode and the uniform convergence method 摘要在广义函数的经典赋值方法的基础上利用等价方式及一致收敛方法定义了一种广义函数的集值。 |
| 10. | And then based on the generalized function and distribution theory , it presents two corollaries that are relate to singularity detection and the wavelet transform modulus maxima line ( wtmml " s ) 结合广义函数与分布理论,提出了两个用于描述瞬态信号波至点检测与小波变换模极大值曲线( wtmml ' s )之间关系的新推论。 |