| 1. | For the geometry depicted in figure 2-2, the lagrange multiplier is positive . 对于图2-2中所画的几何图形来说,拉格朗日乘子是正的。 |
| 2. | A lagrange multiply method to solve multibody dynamic daes 代数方程的拉格朗日乘子方法 |
| 3. | Method of lagrange multipliers 拉格朗日乘子法 |
| 4. | Equilibrium model and augmented lagrange multiplier solution for congested traffic network 拥堵交通网络模型和增强拉格朗日乘子算法 |
| 5. | For the geometry depicted in figure 2 - 2 , the lagrange multiplier is positive 对于图2 - 2中所画的几何图形来说,拉格朗日乘子是正的。 |
| 6. | The purpose of this paper is to improve the received signal by study of the polarization character of target in snow clutter and finding the optimum polarization states of antennas 运用拉格朗日乘子法求出了收发天线的最佳极化方式以增强信号抑制杂波干扰。 |
| 7. | Abstract : in this paper , the proving of the generalized variational function , of elastic and plastic contact problem is simplified by use of the vector analysis method 文摘:用拉格朗日乘子法,利用向量分析的工具及巧妙的变换,对带摩擦约束的弹塑性接触问题的变分不等原理进行了严格的证明。 |
| 8. | The lagrange multiplier method using rate and distortion information is then applied to optimal allocates bitrate for each frame in fine granular scalability substreams 基于拉格朗日乘子法的最优化码率分配算法可以利用该模型中的率失真信息分配码率,在码率一定的条件下提供最好的视频效果。 |
| 9. | The settling behaviors of a rectangular particle with different initial orientation angles and length - width ratios were simulated by using distributed lagrange multiplier / fictitious domain method 摘要为了对方形粒子在二维垂直通道中的沉降运动特性进行研究,应用了拉格朗日乘子虚拟区域方法对不同初始取向角、不同长宽比情况下方形粒子的沉降运动进行了直接数值模拟。 |
| 10. | Some numerical examples are carried out by using the efg method . the imposition of essential boundary conditions by lagrange multipliers is imperative . the rate of convergence when changing the data of weight function and how to select the data are shown 编制了相应程序,通过算例表明了拉格朗日乘子对强制边界条件的作用及无网格伽辽金方法在权函数参数变化时的收敛特性,论证了无网格伽辽金-有限元耦合的有效性。 |