| 1. | Many examples are calculated using these two algorithms 研究了时间复杂性,给出了两种算法各自的优缺点。 |
| 2. | The examples and the corresponding time complexity analysis are given too 同时给出了计算实例及相应的时间复杂性分析 |
| 3. | Especially when wang - ball forms are used , the time complexity for evaluating would be reduced from cubic to quadratic , of the degree of the surface 特别当采用wang - ball曲面时,算法的时间复杂性将从曲面次数的立方降低到平方 |
| 4. | 21 tyler j r , wilkinson d m , huberman b a . email as spectroscopy : automated discovery of community structure within organizations . in it proc 本文算法的时间复杂性为o n2 ,实验表明在处理动态网络的时间效率上优于经典的gn和其改进算法。 |
| 5. | Without the strict feasibility of the initial points and iteration points , the algorithm is shown to possess both polynomial - time complexity and q - linear convergence 该算法不要求初始点及迭代点的可行性且具有q -线性收敛速度和多项式时间复杂性。 |
| 6. | International conference on clustercomputing and the grid ccgrid 2001 , brisbane , australia , may 2001 , p . 161 . 15 goil s , choudhary a . an infrastructure for scalableparallel multidimensional analysis 同时,本文还给出了基于phc存储结构的并行区域查询和动态更新算法,这两个算法的时间复杂性均均为o logdn p 。 |
| 7. | We prove that the worst - case ratio of algorithm d is 15 / 13 , which is better than any other approximation algorithm except polynomial time approximation scheme considering with both worst - case ratio and time complexity 我们证明了对三台机情形,算法d的最坏情况界为15 13 ,该算法的最坏情况界和时间复杂性优于除近似方案以外的已有近似算法。 |
| 8. | The national academy of science , 2002 , 99 : 7821 - 7826 . 16 tyler j r , wilkinson d m , huberman b a . email as spectroscopy : automated discovery of community structure within organizations . in proc 该算法时间复杂性为o n2的主要不足是需要一定的先验知识例如共体数目和每个共体的粗略大小,而这些先验知识事先难于获取,尤其当我们面对未知的符号网络。 |
| 9. | According to these definitions , network fault management is transferred to graph research . diffusion automated fault management algorithm ( dafma ) is proposed in this part and the correctness and time complexity of it are proved carefully 以图为基础,文中提出了扩散法自动网络故障管理算法dafma ,并对该算法的正确性、时间复杂性做了严格分析与证明。 |
| 10. | The mathematical theory of linear self - assembly was mainly developed by adleman . he presented a mathematical formal model of linear self - assembly and studied the character of dynamics of the model - time - complexity and equilibrium Adleman发展了线性自装配的数学理论,系统地提出了线性自装配的形式模型,并且研究了这个模型的动力学特征? ?时间复杂性和自装配的平衡特性。 |