| 1. | The rational numbers also fit into this scheme . 有理数也适用于这个图形。 |
| 2. | It is not necessary to enter into the rational numbers . 已经没有必要去讨论有理数。 |
| 3. | We recall the notion of rational number, defined as a quotient of two integers . 我们回想有理数的概念,它定义为两个整数之商。Rr |
| 4. | If a rectangle can be tiled with squares then the ratio of two neighboring sides of the rectangle is rational . 如果一个矩形可以划分成一些正方形,则该矩形的两条邻边之比是有理数。 |
| 5. | show that we have the following special cases of the sinusoidal spiral, =acosnθ, where n is a rational number. 试证明:我们有正弦螺线acosn(n是有理数)的下列特殊情况。 |
| 6. | The two fractions represent a range of rational numbers 这两个分数表示一个有理数区域。 |
| 7. | Integers , rational numbers , and irrational numbers are all real 整数、有理数和无理数都是实数。 |
| 8. | Can an irrational number to an irrational power be rational 一个无理数的无理数次方是否有可能是有理数? |
| 9. | The following is an extremely simplified class for fractional numbers 以下是一个有理数的极其简化的类。 |
| 10. | Rational numbers and irrational numbers together form the set of real numbers 有理数与无理数一起构成实数。 |