| 1. | We can use the additive property of the integral . 我们可利用积分的可加性。 |
| 2. | He uses this assertion to evaluate real integrals . 他利用这个断言去求实积分的值。 |
| 3. | This cuts the labor of evaluating integrals almost in half . 这几乎省去求解积分的一半劳动。 |
| 4. | Even in this case the equations of motion cannot be integrated exactly . 即使是在这种情况下,运动方程也是不能精确积分的。 |
| 5. | A neat solution of the quadrature problem can be achieved with the spiral of archimedes . 使用阿基米德螺线可以轻松解决求积分的问题。 |
| 6. | We shall now show that the change of variable formula for integrals is just as unforgettable . 我们现在来说明积分的换元公式也一样好记。 |
| 7. | Certainly it holds out the possibility of transforming an integral into another one which can be expressed in terms of known factions . 无疑它提供了把一个积分变换成另一个可以用已知函数来表达的积分的可能性。 |
| 8. | To understand the meaning of the remaining surface integrals in(5. 9. 22)we first investigate the solution corresponding to a doublet source . 为了理解(5922)中其余那些曲面积分的意义,我们首先考察对应于偶源的解。 |
| 9. | On null - additivity of generalized fuzzy valued choquet integrals 积分的零可加性 |
| 10. | A method for generate first integral of hamilton system 系统第一积分的一种方法 |