| 1. | Surface coefficient of heat transfer 表面传热系数 |
| 2. | Influence of varied heat transfer coefficient on grinding temperature field 变化的表面传热系数对磨削温度场的影响 |
| 3. | Surface heat transfer resistance 表面传热阻力 |
| 4. | Calculation of measuring error on solid surface temperature under steady conditions 稳定环境下金属固体表面传热测温误差计算 |
| 5. | Secondly , the experiment is introduced in detail and the correlation of the experimental values is given 其次,对实验进行了详细介绍,并给出了冷凝表面传热系数实验值的计算公式。 |
| 6. | Based on the above deduction , the numerical solution of the condensation heat transfer coefficient outside horizontal tubes with annular fins is obtained 在此基础上,推导出水平环肋管在数值解法下的管外冷凝表面传热系数理论值的计算公式。 |
| 7. | Analyses the determination of surface heat transfer coefficient , interior building envelope load , air infiltration load , equipment load and heat storage load , etc 摘要分析了民用建筑舒适性空调负荷计算中表面传热系数、内围护结构负荷、渗透风负荷、设备负荷、蓄热负荷的确定等问题。 |
| 8. | Through analysis , the theoretical solution of the condensation heat transfer coefficient of horizontal tubes with annular fins is obtained . the theoretical results are compared with the experimental ones 本文通过理论推导,获得了水平环肋管外冷凝表面传热系数的理论计算公式,然后把理论值与实验值进行了比较。 |
| 9. | According to the results , the cause of the error is explained , and the ways of improvement of condenser are put forward the theoretical solution of the condensation heat transfer coefficient is in excellent agreement with the experimental one 本文所推导的冷凝表面传热系数的理论公式与实际情况基本相符,可应用于冷凝器的设计中。 |
| 10. | And last , the experimental data are treated by using a program , and a comparison between the theoretical and the experimental results of the condensation heat transfer coefficient outside horizontal tubes with annular fins is conducted 最后,编写了计算程序,进行数据处理,求得管外冷凝表面传热系数的理论值与实验值,对二者进行了比较,分析了误差产生的原因,提出了冷凝器的改进方法。 |