| 1. | Central factorial moment 中心阶乘矩 |
| 2. | On the other hand , the hfnm is in its own right useful in single - event analysis 另一方面,在单事件分析中,使用横向阶乘矩进行计算是有意义的。 |
| 3. | In this thesis the erraticity of event factorial moments and of event rapidity gaps have been studied 本文对测量事件阶乘矩和事件快度间隔的起伏进行了研究。 |
| 4. | The difference in the horizontal and vertical factorial moments is compared and studied using monte - carlo simulation 摘要用蒙特卡洛模拟方法对纵向阶乘矩和横向阶乘矩进行了比较和研究。 |
| 5. | The phenomena that the fluctuations of event factorial moments increase with decreasing phase space , called erraticity 事件阶乘矩的起伏随着相空间尺度的减小而增大的现象,称之为erraticity 。 |
| 6. | It is shown that the horizontal and vertical factorial moments are equivalent only when they are used in combination with the cumulant variables 发现:在一般情况下,只有在引入累积变量后,纵向阶乘矩才与横向阶乘矩相等。 |
| 7. | The cut of phase space , particle type , average multiparticle , etc . no dynamical fluctuation has been observed through event factorial moments analysis 可见,通过对事件阶乘矩erraticity的分析,根本就观测不到任何动力学起伏。 |
| 8. | Nowever this may imply that the errraticity method is sensitive to the appearance of novel physics in the central collosion of heavy nuclei 尽管如此,这个事实另一方面也意味着事件阶乘矩的erraticity分析可能对重核碰撞中出现的新物理很敏感。 |
| 9. | Therefore , in the study nonlinear phenomena in high energy collisions the hfm can be used only in combination with the cumulant variables 因此,在高能碰撞非线性现象(间歇和分形)的研究中,只有采用了累积变量时,才能使用横向阶乘矩进行计算。 |
| 10. | On the contrary , the fractal in space - time evolution in e + e - collisions turns out to be self - similar , which is due to the isotropy of qcd dynamics 另一方面,在e ~ + e ~ -对撞所产生的末态粒子阶乘矩的分布中呈现出各向同性,表明时空演化中的分形结构为自相似。 |