| 1. | Study of new analytic solution of robotic relative jacobian matrix 机器人相对雅可比矩阵解析求解方法研究 |
| 2. | This method doesn ' t compute the moore - penrose inverse of image jacobian 这种方法无需计算雅可比矩阵伪逆。 |
| 3. | According to the discussion of the jacobian matrix , we find out the dual instantaneous self - motion singularities of the manipulators 通过机构雅可比矩阵的求解,分析机构的运动奇异性。 |
| 4. | By studying on jacobin matrix of planar , a method that can make the machine avoid singularity on operating is put forward 通过对五杆机构雅可比矩阵的分析,提出了避免机床在工作时出现奇异位形的方法。 |
| 5. | The inverse jacobi matrix of the 6 - sps parallel manipulator is obtained from differential equations of the reverse displacement analysis 摘要通过对6 - sps型并联机器人位置输入输出方程微分,获得机器人逆雅可比矩阵。 |
| 6. | The key point of 2 - d or 3 - d resistivity tomography imaging is to get elements of sentivity matrix or jacobi matrix 摘要二维或是三维电阻率反演成像研究,最关键的环节是在反演系数矩阵即敏感矩阵(或雅可比矩阵)的求取上。 |
| 7. | For moving targets , the quasi - gauss - newton and trust region visual servoing control strategies are deduced based on pseudo - inverse estimation of image jacobian matrix 针对运动目标,推导了基于图像雅可比矩阵伪逆估计的伪高斯牛顿视觉伺服算法和信任区视觉伺服算法。 |
| 8. | The forward and inverse kinematics solutions of a 3 - dof parallel micro - nano manipulator were emphatically analyzed , and the jacobi matrix of kinematics forward solution was derived 重点分析了3 - dof并联微纳操作器的运动学正解和逆解,推导出了运动学正解的雅可比矩阵。 |
| 9. | 2 . based on the inverse position equation and the jacobian matrix , the solution of direct position is obtained through the numerical iteration method . 3 在机构位置反解和速度雅可比矩阵的基础上,利用数值迭代的方法对机构进行了正解求解,每次可以求得机构的一组正解。 |