| 1. | They turn out to be differentiable at 0 . 他们在0点也成为可微分的。 |
| 2. | Not all continuous functions are differentiable . 不是所有的连续函数都是可微的。 |
| 3. | Is differentiable in field d and meets the condition above , 在定义域d内任一点可微,且时空映象函数 |
| 4. | Constraint qualifications and dual problems for quasi - differentiable programming 拟可微规划的约束规范和对偶问题 |
| 5. | Covering differentiable manifold 覆盖微分流形 |
| 6. | Are the primitives of fuzzy integrable funcations differentiable almost everywhere 模糊数值函数的积分原函数是否几乎处处可导 |
| 7. | Give a set of mean - value theorem in open - interval with non - differentiable points 摘要给出了开区间内有不可导点的微分中值定理。 |
| 8. | As aspecial case , the viability of epigraph of a sub - differentiable function is discussed 最后讨论了次可微函数上图的生存性问题。 |
| 9. | A linearization method for minimizing a particular class of quasi - differentiable functions 一类特殊拟可微函数最优化问题的线性化方法 |
| 10. | Therefor , this chapter puts forward the solution of non - differentiable equations 为此,本章就解决不可导问题提出了可行的解决方法。 |