| 1. | Let pi be the distinct prime divisors of m . 将m的相异素因子记作pi。 |
| 2. | We divide both by their common divisor . 用它们的公因子去除两个数。 |
| 3. | The divisor is subtracted from the dividend . 从被除数中减去除数。 |
| 4. | The divisor is subtracted from the dividend . 被除数减除数。 |
| 5. | Prove that if n is not a square then it has an even number of divisors . 证明:若n不是完全平方数,则n有偶数个因数。 |
| 6. | The structure of a class of rings with zero divisors 一类具有零因子的环的结构 |
| 7. | Work out dividend or divisor according to the rules 难点:判断求除数或被除数用哪个关系式 |
| 8. | The properties of divisor sum function with cubic complement 关于立方幂补数除数和函数的性质 |
| 9. | Let pi be the distinct prime divisors of m 将m的相异素因子记作pi 。 |
| 10. | Disturbance boundary of unitary pole divisor in polar decomposition 极分解中酉极因子的扰动界 |