| 1. | Every contraction can be extended to a partial isometry . 每一压缩算子能被扩张成一个部分等距算子。 |
| 2. | On isometries between unit spheres of abstract m spaces 空间的单位球面之间的等距 |
| 3. | On linear extension of isometries between the unit spheres 单位球面间等距映射的线性延拓 |
| 4. | Extension of isometries between unit sphere 单位球面上的等距算子的延拓 |
| 5. | On extension of isometries between the unit spheres 型空间的单位球面间满等距映射的表现定理及等距延拓 |
| 6. | Isometries between the unit spheres of l1 - sum of strictly convex normed spaces 和的单位球面之间的等距 |
| 7. | Extension of isometries and , , 2 - isometries on the unit spheres of - normed spaces 单位球面间的等距延拓 |
| 8. | Discreteness criteria for subgroups of isometry group of pinched hadamard manifold 流形上等距子群的离散准则 |
| 9. | On linear extension of isometries between the unit spheres of - normed spaces 范空间中单位球面间的等距算子的线性延拓 |
| 10. | This method provides a way to investigate the onto isometries of other space of operators or operators algebras 此法为以后研究其他算子空间或算子代数的等距离提供了一条新的途径。 |