| 1. | On a problem related to idempotent semiring 关于幂等元半环理论中的一个问题 |
| 2. | Fuzzy prime ideals and fuzzy prime radicals over semiring 半环上的模糊素理想和模糊素根 |
| 3. | A note for the divisible semiring congruence on eventually regular semiring 关于拟正则半环上可除半环同余的注记 |
| 4. | Moreover we generize a result of howie [ 12 ] to a commutative regular semiring 并且把howie [ 12 ]的一个结果推广到?个交换正则半环s上。 |
| 5. | Results some equivalent statements are obtained concerning a semiring becoming a distributive lattice 结果给出了该类半环成为分配格的几个等价命题。 |
| 6. | Aim in order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice 摘要目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。 |
| 7. | Main results are following : theorem 1 . 9 let 5 is a - pseudo - strong distributive lattice semiring , 0 is a congruence of the definition in lemma 1 . 4 所得的主要结果如下:定理1 9设为伪强分配格半环,为引理1 4中所定义的s上的同余。 |
| 8. | Theorem 1 . 2 . 5 a semiring s is a normal a - idempotent semiring , if and only if s is a strong right normal idempotent semiring of left zero idempotent semirings 5半环s是正规a -幂等半环,当且仅当s是左零幂等半环的强右正规幂等半环。定理1 |
| 9. | Theorem 2 . 2 . 4 a semiring s is an additive normal c - idempotent semiring , if and only if s is a pseudo - strong right normal idempotent semiring of left zero semirings 4s是加法正规c一幂等半环,当且仅当s是左零半环的伪强右正规幂等半环定理2 |
| 10. | Theorem 3 . 6 s is a direct product of an additive left normal d - idempotent semiring and a ring , if and only if 5 is a pseudo - strong lattice idempotent semiring of left rings 定理3 6s是加法左正规d一幂等半环和环的直积,当且仅当s是左环的伪强半格幂等半环 |