| 1. | Globally smoothing solution to euler ' s equations with relaxation term 具松弛项的欧拉方程组的整体光滑解 |
| 2. | Existence of global smooth solution to burger ' s equation with singular dissipation 方程整体光滑解的存在性 |
| 3. | Viscosity methods for piecewise smooth solutions to nonhomogeneous scalar conservations laws 非齐次守恒律方程分片光滑解的粘性方法 |
| 4. | In the second part , we mainly investigate asymptotic behavior of globally smooth solution of this model 在第二部分,我们主要研究此模型整体光滑解的渐近性态。 |
| 5. | Using a different method , fixed point argument , from the first part , we give local existence and uniqueness of smooth solution 我们采用不同于第一部分的方法,不动点论证法,来证明局部光滑解的存在唯一性。 |
| 6. | One is the existence of a kind of strong solution , and the other is the global existence and large time behavior of smooth solution 一方面得到了一种强解的存在性,另一方而得到了光滑解的全局存在性和大时间行为。 |
| 7. | Roughly speaking , there exists a unique global smooth solution u ( x , t ) to the above cauchy problem with some restriction to the initial data 粗略地讲就是在对初值给出适当的限制条件下上述cauchy问题存在唯一的整体光滑解u ( x , t ) 。 |
| 8. | Then we apply energy method to get a priori estimate which yields the the global existence and asymptotic result with the help of the local existence result 然后利用能量方法做一个有用的先验估计,由此估计和局部存在性结果即可得到光滑解的整体存在性和渐近性结果。 |
| 9. | Recently , ding shijin and guo doling obtain the partial regularity of the weak solutions , whether it has global smooth solution is still an important open problem 最近丁时进、郭柏灵又证明了它的弱解的部分正则性。它是否存在整体光滑解仍然是一个悬而未决的重要的公开问题。 |
| 10. | This topic combined with the second one imply that we partly reply the open problem about the existence of global smooth solution for multidimensional landau - lifshitz equations with initial - boundary conditions 因此本课题和上一课题意味着我们部分地回答了landau - lifshitz方程整体光滑解的存在性问题。 |