| 1. | Method of computing correlation dimension based on wavelet packet transform 一种基于小波包变换的关联维数计算方法 |
| 2. | The calculation of chaos and fractal characteristic parameter , the correlation , is studied 摘要研究了混沌与分形的特征参数关联维数的计算方法和参数的选择。 |
| 3. | Application of correlation dimension in fan fault diagnosis based on wavelet coefficient region relativity 基于小波系数区域相关性的关联维数在风机故障诊断中的应用 |
| 4. | In this paper , the correlation dimension is taken as the chaos identification evidence and the method is used to see whether the given fault gear signal has chaos characteristics 应用替代数据法,以关联维数作为混沌判据,对故障齿轮信号进行了混沌特性判别。 |
| 5. | Using seismic attributes of fractal dimension , lyapunov exponents and catastrophe parameter as the input of system , the good stimulating results are achieved 用本次研究得到的关联维数、 lyapunov指数、突变参数作为系统输入,进行数值模拟计算,得到较好的效果。 |
| 6. | The chaotic invariants of measured time series of dams such as correlation dimension , the lyapunov exponent and the kolmogorov entropy , are calculated 对大坝观测时间序列进行了相空间重构,计算其混沌特征量,即吸引子维数(关联维数) 、 lyapunov指数和kolmogorov熵。 |
| 7. | In addition , the author proved and discussed through the relations of the length - radius dimension model , spatial correlation dimension model , transportation pattern and urban spatial shape 此外,借用长度?半径维数模型与关联维数模型对交通方式与城市空间形态之间的关系进行了论证和探讨。 |
| 8. | It was discussed on the situations of different non - uniform degree and different disturbing intensity . in this paper , the approach for calculating intercalation dimension of attractors had improved 重点探讨了在普通重构相空间理论思路基础上,针对落沙序列的吸引子关联维数计算方法的合理改进。 |
| 9. | The primary conclusions can be drawn : the intercalation dimension estimate value and kolmogrov entropy of grading uniform degree sand - pile which present soc are larger than non - uniform sand - pile 得到初步结论:颗粒组成均匀的沙堆,吸引子关联维数大于非均匀沙堆;扰动较大时,吸引子关联维数也较大。 |
| 10. | General dimension and its chart were calculated and painted based on general dimension . box dimension , information dimension and correlation dimension can be extracted from general dimension series 以广义维数为基础,计算和绘制了广义维数及其谱图,从广义维数中可提取盒维数、信息维数、关联维数。 |