| 1. | Oscillatory behavior of second order nonlinear difference equations 一类二阶非线性差分方程解的振动性 |
| 2. | Oscillation of a class of impulsive nonlinear difference equations 一类非线性脉冲时滞差分方程解的振动性 |
| 3. | Asymptotic behavior of solutions of higher order nonlinear difference equations 高阶非线性变时滞差分方程解的渐近性 |
| 4. | Oscillatory and asymptotic behaviour of unsteady second - order difference equation 不稳定型二阶差分方程解的振动性及渐近性 |
| 5. | Asymptotic behavior of solutions for the third order nonlinear delay difference equations 三阶非线性时滞差分方程解的渐近性 |
| 6. | Asymptotic behavior of solutions to third order poincar 233 ; difference equations with multiple roots 差分方程解的渐近性质 |
| 7. | Oscillatory and asymptotic behavior of higher order nonlinear neutral difference equations with forcing term 一类高阶非线性差分方程解的渐近性 |
| 8. | Chapter three , we consider the forced first order difference equations with variable coefficients , and obtain some necessary and sufficient conditions for every solution of the equations is oscillatory or tends to zero 第三章建立了带有强迫项的一阶变系数中立型差分方程解振动或趋于零的充分必要条件。 |
| 9. | Then . with the help of some good results of differential equations theory , some sufficient conditions for all solutions of the equations to be oscillatory are obtained . the way is to proof by contradiction and construct sequence 1 )的振动性,首先,利用积分变换,给出了几个引理,将此类差分方程转化为相应的微分方程或微分不等式,得出了新变量的一些重要性质;然后用反证法和构造序列的方法,充分利用微分方程理论中的一些重要结论,得到此类差分方程解振动的若干充分条件 |