| 1. | Convergence and divergence of infinite series depend upon this concept . 无穷级数的收敛性与发散性与此概念有关。 |
| 2. | The convergence and summation of bi - alternating series 一类双交错级数的收敛性及求和法 |
| 3. | The convergence and summation of equispaced alternating series 等间距交错级数的收敛性及求和法 |
| 4. | The convergence of lower side and bilateral bitangent dirichlet series 级数的迭代级数的收敛性 |
| 5. | The convergence and growth of lower side bitangent random dirichlet series 级数的收敛性与增长性 |
| 6. | Convergence of random dirichlet series 随机狄里克莱级数的收敛性 |
| 7. | Convergence of series 级数的收敛性 |
| 8. | Property 3 deleting , adding and altering the finite terms of the infinite series keep the convergence of the series 性质3在级数中去掉、加上或改变有限项,不会改变级数的收敛性。 |
| 9. | In this paper , we study the convergences of random dirichlet series by the local convergence of random variable and the strong law of large numbers , and obtain some simple and explict formulae on abscissa of convergence 该文是利用随机变量序列的局部收敛性及强大数定律研究了随机狄里克莱级数的收敛性,得出了它的收敛横坐标的简洁公式 |
| 10. | Abstract : in this paper , we study the convergences of random dirichlet series by the local convergence of random variable and the strong law of large numbers , and obtain some simple and explict formulae on abscissa of convergence 文摘:该文是利用随机变量序列的局部收敛性及强大数定律研究了随机狄里克莱级数的收敛性,得出了它的收敛横坐标的简洁公式 |